Chem. Ber. 103, 694 – 699 (1970)

Herbert W. Roesky

Reaktionen an Thiophosphoryl- und Phosphoryldihalogenidamiden¹⁾

Aus dem Anorganisch-Chemischen Institut der Universität Göttingen

(Eingegangen am 6. Oktober 1969)

Thiophosphoryldihalogenid-amide, S=PX₂NH₂ (X = F und/oder Cl) reagieren mit CH₃PCl₄ oder CCl₃PCl₄ unter HCl-Abspaltung zu SPF₂NPCl₂CH₃, SPFClNPCl₂CH₃, SPFClNPCl₂CCl₃ und SPFClNPCl₂CCl₃ (1—5). Phosphoryldihalogenid-amide, O=PX₂NH₂ (X = F und/oder Cl) lassen sich analog mit CH₃PCl₄ und CCl₃PCl₄ zu OPFClNPCl₂CCH₃, OPF₂NPCl₂CCl₃, OPFClNPCl₂CCl₃ und OPCl₂NPCl₂CCl₃ (6—9) umsetzen. Nach kryoskopischen Molekulargewichtsbestimmungen sind die Verbindungen in Benzol monomer. Die IR-Spektren der Verbindungen werden diskutiert, charakteristische Banden versuchsweise zugeordnet und Substituenteneinflüsse untersucht. Analysen, ¹H- und ¹⁹F-NMR-Daten sowie Brechungsindizes werden mitgeteilt.

Reactions of Thiophosphoryl- and Phosphoryldihalide Amides 1)

Thiophosphoryldihalide amides, S=PX₂NH₂ (X = F and/or Cl) react with CH₃PCl₄ or CCl₃PCl₄ under HCl-evolution to give SPF₂NPCl₂CH₃, SPFClNPCl₂CH₃, SPCl₂NPCl₂CH₃, SPF₂NPCl₂CCl₃, and SPFClNPCl₂CCl₃ (1-5). Phosphoryldihalide amides, O=PX₂NH₂ (X = F and/or Cl) similarly react with CH₃PCl₄ and CCl₃PCl₄ to yield the compounds OPFClNPCl₂CH₃, OPF₂NPCl₂CCl₃, OPFClNPCl₂CCl₃, and OPCl₂NPCl₂CCl₃ (6-9). Cryoscopic molecular weight determinations showed that the compounds in benzene are monomeric. The i.r. spectra are discussed, characteristic bands are tentatively assigned and the influence of substituents is determined. Analytical results, ¹H- and ¹⁹F-n.m.r data and refractive indices are reported.

-

Im Rahmen unserer Untersuchungen über Phosphor-Stickstoff-Fluor-Verbindungen berichteten wir verschiedentlich über die Darstellung von $X-N=PF_3$ - und $X-N=PF_2Cl$ -Verbindungen $^{2-5}$. Dazu ließen wir Amide mit PF_3Cl_2 reagieren, z. B.

$$CISO_2NH_2 + Cl_2PF_3 \longrightarrow CISO_2N = PF_3 + 2HCl$$

Mit überschüssigem PF₃Cl₂ setzen sich die XN=PF₃-Verbindungen unter Fluor-Chlor-Austausch zu den XN=PF₂Cl-Verbindungen um. Dagegen führte die Fluorierung von X-N=PCl₃-Derivaten nicht zu den gewünschten teil- oder perfluorierten

¹⁾ Phosphorverbindungen, 46. Mitteil. — 45. Mitteil.: H. W. Roesky, Inorg. nuclear Chem., im Druck.

²⁾ H. W. Roesky und L. F. Grimm, Chem. Ber. 102, 2319 (1969).

³⁾ H. W. Roesky und L. F. Grimm, Inorg. nuclear Chem. Letters 5, 13 (1969); M. Lustig, Inorg. Chem. 8, 443 (1969).

⁴⁾ H. W. Roesky und W. Grosse Böwing, Inorg. nuclear Chem. Letters 5, 597 (1969).

⁵⁾ H. W. Roesky und W. Grosse Böwing, Z. Naturforsch. 246, 1250 (1969).

Verbindungen. Nach einem russischen Patent⁶⁾ lassen sich jedoch teilalkylierte Chlorverbindungen mit Antimontrifluorid in die entsprechenden Fluorverbindungen überführen, z. B.

$$3F_3C-CON=PCl_2CH_3+2SbF_3 \longrightarrow 3F_3C-CON=PF_2CH_3+2SbCl_3$$

Es war deshalb naheliegend, zunächst einmal Thiophosphoryl- und Phosphorylamide mit CH₃PCl₄ und CCl₃PCl₄ umzusetzen, z. B.

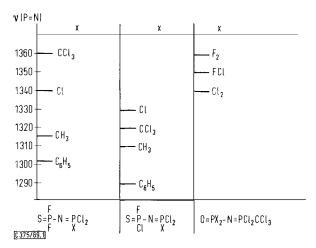
$$\begin{array}{c} F \\ S = P - NH_2 + Cl_4PCH_3 \longrightarrow S = P - N = P - CH_3 + 2 \, HCl \\ F \qquad \qquad \end{array}$$

Dargestellte Thiophosphoryl- und Phosphorylverbindungen

Verbindung		Ausb.	Sdp./Torr (Schmp.)	n_{D}^{20}	d ₄ ²⁰
1	$ \begin{array}{ccc} F & Cl \\ S = P - N = P - CH_3 \\ F & Cl \end{array} $	69	58.5 — 59.5°/0.02	1.4948	1.5984
2	$\begin{array}{ccc} F & Cl \\ S = P - N = P - CH_3 \\ Cl & Cl \end{array}$	75	73.5 – 74.5°/0.03	1.5404	1.6049
3	$\begin{array}{c} Cl & Cl \\ S = P - N = P - CH_3 \\ Cl & Cl \end{array}$	12	110112°/0.03 (49-51°)		
4	$S = P - N - P - CCl_3$ $F \qquad Cl$	16	77 – 80°/0.03 (76 – 78°)		
5	$ \begin{array}{ccc} F & Cl \\ S = P - N = P - CCl_3 \\ Cl & Cl \end{array} $	50	82-84°/0.02 (38-40°)		
6	$ \begin{array}{ccc} F & Cl \\ O = P - N = P - CH_3 \\ Cl & Cl \end{array} $	28	76 - 78°/0.02 (23 - 24°)		
7	$ \begin{array}{ccc} F & Cl \\ O = P - N = P - CCl_3 \\ F & Cl \end{array} $	13	72-74°/0.03	1.4960	1.8277
8	$O = P - N = P - CCl_3$ $Cl \qquad Cl$	23	78—79°/0.03	1.5223	1.8415
9	$ \begin{array}{ccc} Cl & Cl \\ O = P - N = P - CCl_3 \\ Cl & Cl \end{array} $	39	100 - 102°/0.03 (40 - 42°)		

Die entstandenen Alkylchlorphosphorverbindungen 1-9 (Tab.) sind destillierbare Verbindungen, die wesentlich weniger luft- und feuchtigkeitsempfindlich sind als die entsprechenden Ausgangsverbindungen.

Die Massenspektren von XN=PF₃ und XN=PF₂Cl ergaben, daß diese Verbindungen als Monomere vorliegen. Nach *Kirsanov*⁷⁾ hängt das Entstehen monomerer oder dimerer Moleküle im wesentlichen von der Elektronegativität des Substituenten


⁶⁾ S. Z. Ivin, K. V. Karavanov und V. V. Lysenko, Russ. Pat. 188967 (1965), C. A. 67, 63859r (1967).

⁷⁾ G. J. Derkach, J. N. Zhmurova, A. V. Kirsanov, V. J. Shevchenko und A. S. Shtepanek, Phosphazo-Verbindungen, Jzdatelstvo Nau kova Dumka Kiew 1965; M. Becke-Goehring, Fortschr. chem. Forsch. 10, 207 (1968).

X ab. Mit Substituenten, die die Basizität des Stickstoffs erhöhen, entstehen Phosphor-Stickstoff-Vierringe, z. B. $(CH_3NPCl_3)_2^{8)}$ und $(CH_3NPF_3)_2^{9-11}$. Die besondere Stabilisierung des viergliedrigen Ringsystems verhindert offenbar die Ausbildung der Phosphor-Stickstoff-Doppelbindung. Befinden sich am Stickstoff Gruppen mit Doppelbindung, z. B. $S=PF_2-$, $O=PF_2-$, $C_6H_5SO_2-$, so kann eine Stabilisierung der Phosphor-Stickstoff-Doppelbindung durch Konjugationseffekte möglich werden. Nach $Schmutzler^{9)}$ ist jedoch $(C_6H_5)_2PF=NCH_3$ monomer. Es hat keine konjugationsfähige Doppelbindung am Stickstoffatom und bildet somit eine Ausnahme. Auffallend ist beim $(C_6H_5)_2PF=NCH_3$ der hohe Schmelzpunkt und die niedrige P-F-Kopplungskonstante. Diese Daten sprechen mehr für einen Vierring. Weiterhin geplante Untersuchungen sollen zeigen, ob geeignete Substituenten am Stickstoff und Phosphor die Ausbildung des Vierrings oder die P=N-Doppelbindung begünstigen.

IR-Spektren

Aufgrund früherer Untersuchungen $^{2,12)}$ an Verbindungen mit P=N-Doppelbindung bereitet die Zuordnung der sehr intensiven P=N-Bande bei den Verbindungen 1-9 keine Schwierigkeiten. Am einfachsten ist die Festlegung in den Spektren der Thiophosphorylverbindungen 4 und 5, weil dort zwischen 1360 und 1320/cm nur eine starke Bande auftritt. In den Thiophosphorylverbindungen 1-3 ist sie die beherrschende Bande, alle anderen Absorptionen in diesem Gebiet sind schwächer. In den Phosphorylderivaten 6-9 sind P=0- und P=N-Banden von ähnlicher Intensität, jedoch unterscheidet sich letztere deutlich von v(P=0) durch ihre breite Kontur.

 $P \!=\! N\text{-Valenzschwingungsfrequenzen} \hspace{0.2cm} \text{der} \hspace{0.2cm} \text{dargestellten} \hspace{0.2cm} \text{Thiophosphoryl-} \hspace{0.2cm} \text{und} \hspace{0.2cm} Phosphoryl-\\ \hspace{0.2cm} \text{dihalogenid-amide}$

⁸⁾ A. C. Chapman, W. S. Holmes, N. L. Paddock und H. T. Searle, J. chem. Soc. [London] 1961, 1825.

⁹⁾ R. Schmutzler, Chem. Commun. 1965, 19.

¹⁰⁾ G. C. Dimitras, R. A. Kent und A. G. Mac Diarmid, Chem. and Ind. 1964, 1712.

¹¹⁾ R. Schmutzler, Advances in Fluorine Chemistry, Vol. 5, S. 31, Butterworth's, London 1965.

¹²⁾ W. Wiegräbe und H. Bock, Chem. Ber. 101, 1414 (1968).

Kürzlich zeigten wir ²⁾, daß der Fluor-Chlor-Austausch in der Thiophosphorylgruppe einen geringeren frequenzerniedrigenden Effekt auf die P=N-Valenzschwingung ausübt als die entsprechende Substitution an der N=PF₃-Gruppe. Um den Einfluß der phosphorständigen Substituenten ¹²⁾ näher zu untersuchen, haben wir in der Abbild. die P=N-Valenzschwingungsfrequenzen in Abhängigkeit der Substituenten aufgetragen. In den ersten beiden Spalten werden die Liganden am Stickstoff nicht geändert. Stark elektronenziehende Reste am Phosphor verstärken danach die P=N-Doppelbindung, daneben spielen jedoch Massen-Effekte und sterische Anordnungen eine wichtige Rolle. Beim sukzessiven Ersatz von Fluor gegen Chlor in der 3. Spalte der Abbild. beobachtet man die erwartete Frequenzerniedrigung.

Herrn Dr. E. Niecke danke ich für die Messung von ¹H- und ¹⁹F-NMR-Spektren. Dem Direktor des Anorganisch-Chemischen Institutes, Herrn Professor Dr. O. Glemser, danke ich für seine stete Förderung. Dem Bundesminister für wissenschaftliche Forschung, der Deutschen Forschungsgemeinschaft und der Stiftung Volkswagenwerk bin ich für Unterstützung zu Dank verpflichtet.

Beschreibung der Versuche

Alle Versuchc wurden unter Luftausschluß in einer Stickstoffatmosphäre durchgeführt. Der verwendete Stickstoff wurde durch einen Trockenturm mit P₄O₁₀ geleitet. Die verwendeten Glas- bzw. Quarzgeräte wurden heiß zusammengesetzt. Die ¹⁹F- und ¹H-NMR-Spektren wurden mit dem Gerät A 56/60 von Varian (äußerer Standard CFCl₃ bzw. (CH₃)₄Si), die IR-Spektren der Festkörper mit Nujol als Einbettungsmittel und Flüssigkeiten als kapillare Filme zwischen KBr-Platten (Spektrophotometer von Leitz) aufgenommen.

Allgemeine Arbeitsvorschrift zur Darstellung der Verbindungen 1-9: In einem 250-ccm-Zweihalskolben mit Rückflußkühler werden 50 ccm Tetrachlorkohlenstoff, 0.1 Mol Alkylphosphorhalogenid und 0.1 Mol Thiophosphoryl- oder Phosphoryl-dihalogenid-amid unter Rühren erhitzt. Nach beendetet HCl-Entwicklung (1-3 Stdn.) wird das Lösungsmittel erst im Wasserstrahlvak, und der noch verbleibende Rest i. Ölpumpenvak, abgezogen. Das entstandene Produkt wird fraktioniert destilliert. Ausbeuten und Kenndaten s. Tab.

N-Methyldichlorphosphoranyliden-thiophosphoryldifluorid-amid (1): Aus CH_3PCl_4 und SPF_2NH_2 .

```
CH<sub>3</sub>Cl<sub>2</sub>F<sub>2</sub>NP<sub>2</sub>S (231.9) Ber. C 5.18 H 1.30 Cl 30.57 F 16.38 N 6.04 P 26.71 S 13.82 Gef. C 5.1 H 1.3 Cl 31.2 F 16.2 N 6.1 P 26.2 S 13.6 Mol.-Gew. 237 (kryoskop. in Benzol)
```

¹⁹F-NMR: $\delta_F = 33.4 \text{ ppm } (J_{AX} + J_{BX} = 1058 \text{ Hz}).$

¹H-NMR: $\delta_{\rm H} = -2.95$ ppm ($J_{\rm HP_B} = 16$, $J_{\rm HP_A} = 1.6$ Hz).

 $1R: \approx 3000 \text{ s}, \approx 2910 \text{ s}, 1398 \text{ m}, 1315 \text{ sst}, 1290 \text{ sst}, 932 \text{ m}, 885 \text{ sst (sh)}, 828 \text{ st}, 773 \text{ st}, 623 \text{ st}, 557 \text{ sst}, 503 \text{ s}, 483 \text{ s}, 452/\text{cm m}.$

N-Methyldichlorphosphoranyliden-thiophosphorylchloridfluorid-amid (2): Aus CH_3PCl_4 und $SPFClNH_2$.

```
CH<sub>3</sub>Cl<sub>3</sub>FNP<sub>2</sub>S (248.4) Ber. C 4.83 H 1.22 Cl 42.82 F 7.65 N 5.64 P 24.94 S 12.90 Gef. C 4.6 H 1.2 Cl 41.7 F 7.9 N 5.5 P 23.4 S 13.1 Mol.-Gew, 249 (kryoskop. in Benzol)
```

¹⁹F-NMR: $\delta_F = 3.05$ ppm ($J_{FP_A} = 1102$, $J_{FP_B} = 20.5$ Hz).

¹H-NMR: $\delta_{\rm H}$ = -3.06 ppm ($J_{\rm HP_B}$ = 16.2, $J_{\rm HP_A}$ = 1.9 Hz).

IR: \approx 3020 s, \approx 2930 s, 1400 m, 1310 sst, 1280 sst, 930 m, 900 st, 865 sst, 835 m, 822 m, 770 sst, 652 sst, 555 sst, 505 sst, 473 m, 413/cm m.

N-Methyldichlorphosphoranyliden-thiophosphoryldichlorid-amid (3): Aus CH_3PCl_4 und $SPCl_2NH_2$.

CH₃Cl₄NP₂S (264.9) Ber. C 4.53 H 1.14 Cl 53.56 N 5.29 P 23.38 S 12.10 Gef. C 4.8 H 1.2 Cl 53.2 N 5.1 P 22.7 S 13.6 Mol.-Gew. 278 (kryoskop. in Benzol)

¹H-NMR: $\delta_{\rm H} = -3.13$ ppm ($J_{\rm HP_B} = 16$, $J_{\rm HP_A} = 2$ Hz).

IR: \approx 3000 s, \approx 2910 s, 1398 st, 1280 sst, 926 st, 895 st, 812 st, 755 sst, 655 sst (sh), 560 sst, 510 sst, 478 sst, 453/cm m.

N-Trichlormethyldichlorphosphoranyliden-thiophosphoryldifluorid-amid (4): Aus CCl_3PCl_4 und SPF_2NH_2 .

CCI₅F₂NP₂S (335.3) Ber. C 3.58 Cl 52.87 F 11.23 N 4.18 P 18.48 S 9.56 Gef. C 4.2 Cl 51.6 F 11.2 N 4.3 P 18.8 S 9.7 Mol.-Gew. 334 (kryoskop. in Benzol)

19F-NMR: $\delta_{\rm F} = 32.75 \text{ ppm } (|J_{\rm AX} + J_{\rm BX}| = 1070 \text{ Hz}).$

IR: 1360 sst, 875 sst, 840 m, 780 sst, 740 m, 632 m, 600 sst, 525 st, 466 s, 423/cm sst.

N-Trichlormethyldichlorphosphoranyliden-thiophosphorylchloridfluorid-amid (5): Aus CCl₃PCl₄ und SPFClNH₂.

CCl₆FNP₂S (351.8) Ber. C 3.41 Cl 60.48 F 5.40 N 3.98 P 17.60 S 9.12 Gef. C 3.4 Cl 59.7 F 5.7 N 4.0 P 17.7 S 9.3

Mol.-Gew. 324 (kryoskop. in Benzol)

¹⁹F-NMR: $\delta_F = 2.66 \text{ ppm } (J_{FP_A} - 1102, J_{FP_B} = 16 \text{ Hz}).$

IR: 1320 sst, 925 s, 860 sst, 820 sst, 782 sst, 665 sst, 600 sst, 533 sst, 493 sst, 460 - 445/cm m.

N-Methyldichlorphosphoranyliden-phosphorylchloridfluorid-amid (6): Aus CH_3PCl_4 und $OPFClNH_2$.

CH₃Cl₃FNOP₂ (232.4) Ber. C 5.17 H 1.30 Cl 45.77 F 8.18 N 6.03 P 26.66 Gef. C 4.9 H 1.3 Cl 44.3 F 8.8 N 6.1 P 25.9

19F-NMR: $\delta_{\mathbf{F}} = 30.25 \text{ ppm } (J_{\mathbf{FP_A}} = 1033, J_{\mathbf{FP_B}} = 21.5 \text{ Hz}).$

¹H-NMR: $\delta_{\rm H} = -3.1$ ppm ($J_{\rm HP_B} = 14.6$, $J_{\rm HP_A} = 2.1$ Hz).

IR: \approx 3220 m, \approx 3100 s, \approx 3000 m, \approx 2920 m, 1360 – 1260 sst, 990 st, 930 st, 900 – 870 sst, 803 st, 740 sst, 580 – 550 sst, 485 s, 468/cm s.

N-Trichlormethyldichlorphosphoranyliden-phosphoryldifluorid-amid (7): Aus CCl_3PCl_4 und OPF_2NH_2 .

CCl₅F₂NOP₂ (319.2) Ber. C 3.76 Cl 55.53 F 11.90 N 4.39 P 19.41 Gef. C 3.9 Cl 57.9 F 11.1 N 4.1 P 18.6

¹⁹F-NMR: $\delta_F = 69.0 \text{ ppm } (|J_{AX} + J_{BX}| = 955 \text{ Hz}).$

IR: 1360 sst, 1320 sst, 910 sst, 855 s, 785 sst, 610 sst, 540 sst, 475 m, 460/cm st.

N-Trichlormethyldichlorphosphoranyliden-phosphorylchloridfluorid-amid (8): Aus CCl_3PCl_4] und $OPFClNH_2$.

CCl₆FNOP₂ (335.7) Ber. C 3.58 Cl 63.37 F 5.66 N 4.17 P 18.45 Gef. C 3.6 Cl 62.0 F 6.1 N 4.3 P 18.5

¹⁹F-NMR: $\delta_F = 29.2$ ppm ($J_{FP_A} = 1041$, $J_{FP_B} = 19.5$ Hz).

IR: 1345 sst, 1285 st, 895 st, 775 st, 612 sst, 572 sst, 530 sst, 437/cm sst.

N-Trichlormethyldichlorphosphoranyliden-phosphoryldichlorid-amid (9): Aus CCl_3PCl_4 und $OPCl_2NH_2$.

CCl₇NOP₂ (352.0) Ber. C 3.41 Cl 70.48 N 3.98 P 17.59 Gef. C 3.5 Cl 68.4 N 4.0 P 18.3

IR: 1335 sst, 1265 st, 1030 s, 970 s, 855 s, 785 sst, 610 sst, 665 sst, 535 sst, 502 sst, 448/cm s.

[375/69